

Separating Axis
Theorem for Oriented

Bounding Boxes

By: Johnny Huynh
Written on: 12/16/2008
Revised on: 9/15/2009

Note: This tutorial is based on understanding how the Separating Axis Theorem is applied in
Gottstalk’s “OBB-Tree: A Hierarchical Structure for Rapid Interference Detection.”

www.jkh.me

Table of Content

Separating Axis Theorem and Rectangles in 2D Space 3

Computing the Intersection of Two Oriented Bounding Rectangles 12

Separating Axis Theorem and Boxes in 3D Space 17

Computing the Intersection between Two Rectangles in 3D Space is Problematic
 27

Computing the Intersection of Two Oriented Bounding Boxes 28

Optimizing the Computation of T•L 31

Optimized Computation of OBBs Intersections 34

Appendix 38

Case Studies: Detecting Intersecting Boxes 38

Proof sA • (B C) = sC • (A B) 39

Proof T • (Ax Bx) = (T • Az)(Ay • Bx) – (T • Ay)(Az • Bx) 41

Bibliography 45

Separating Axis Theorem and Rectangles in 2D Space

Before we begin our tutorial on collision detection using oriented bounding boxes (OBB), it is
necessary for us to understand the Separating Axis Theorem.

For simplicity, we will begin with the 2-dimensional (2D) space before moving on to the 3-
dimensional (3D) space.

In 2D space, the Separating Axis Theorem states two convex polygons do not intersect if and
only if there exists a line such that the projections of the two polygons onto the line do not
intersect. The line is known as a separating axis. Consider rectangle A and rectangle B in the
illustration below.

Illustration: Polygons A and B do not intersect because there exists a separating axis such that
the projections of A and B onto the axis do not intersect.

The Separating Axis Theorem may also be equivalently defined as two polygons do not intersect
if and only if there exists a line that completely divides a polygon on one side of the line and the

other polygon on the other side of the line. This line is known as the separating line, which is
perpendicular to the separating axis, and is depicted in the illustration below.

Illustration: Rectangle A and rectangle B are divided by a line, also known as a separating line.
The separating line is perpendicular to the separating axis.

Note that there may be more than one separating line parallel to one another, but we will
generally only consider each set of parallel separating lines as one separating line for simplicity.
See the illustration below.

Illustration: We will consider each set of parallel separating lines as one separating line for
simplicity.

We need only consider separating lines perpendicular to separating axes because a separating
line exists if and only if there exists a separating line that is parallel to an edge of rectangle A or
B. In other words, there would have to be at least one separating line that is parallel to an edge
of rectangle A or B, if any other separating lines were to exist. In the illustration above, the
separating lines are parallel to the height dimension of rectangle A. Hence, to check for an
intersection, we will only need to check the lines parallel to the edges of both A and B.

In order to determine whether two polygons intersect, we need to find whether any separating
line exists. If a separating line exists, then the two polygons do not intersect; otherwise, the two
polygons are intersecting.

Notice a rectangle only has 2 unique axes for its edges because each edge of a rectangle is
conveniently parallel to the edge on the other side. Since we know if any separating line is to
exist, then the separating line would be parallel to one of the edges (of the two polygons), in
checking for a separating line, we only need to consider 2 lines for each rectangle. Therefore,
for 2 rectangles, we only need to consider 4 lines. This is illustrated below.

Illustration: To find whether rectangle A and B intersect, we need only consider 4 possible
separating lines, which are parallel to the edges of rectangle A and B.

By the Separating Axis Theorem, a separating line exists if and only if there exists a separating
axis (i.e. an axis perpendicular to the separating line, such that there exists a line with one end
touching polygon A and the other end touching polygon B when polygon A and B are projected
onto the axis). See the illustration below.

Illustration: A separating line exists if and only if there exists a separating axis such that lines
may extend between polygons A and B.

Because a separating line exists if and only if a separating axis exists, we can determine whether
a separating line exists by finding whether a separating axis exists.

Conveniently, the axes of the edges of the rectangle are perpendicular to one another. So we
can simply project rectangle A and B onto these axes. See the illustration below.

Illustration: Since separating lines exist only when there exists a separating axis that is
coincidentally parallel to one of the edges, we need only consider the axes of the edges. This is
because the edges of each rectangle are perpendicular to one another. Thus, we can use the
axes of the edges to check whether there exists a separating axis.

We will now go through an example. We will use our two rectangles, A and B, as an example.
Thus, there are 4 separating lines to check for, and we will find whether any separating line
exists by checking whether any of the 4 corresponding separating axes exists. Hence, there are
4 cases to consider.

For case 1, suppose we want to check for a separating line parallel to axis 1, such that the
separating line divides rectangle A on one side of the line and rectangle B on the other side of
the line. Then we need to check for a separating axis that is perpendicular to axis 1. This is
equivalent to checking for a separating axis that is perpendicular to the separating line parallel
to axis 1. Conveniently, axis 2 is perpendicular to axis 1, so we can project A and B onto axis 2 to
determine whether 2 is a separating axis.

Illustration: The axis 2 is not a separating axis because A and B overlap, which implies there is
no separating line parallel to axis 1.

Since we did not find a separating axis, we go to case 2, and suppose we want to find if there
exists a separating line parallel to axis 2. Since axis 1 is perpendicular to axis 2, we project
rectangles A and B onto axis 1.

Illustration: The axis 1 is a separating axis because the projections of rectangles A and B onto
axis 1 do not overlap nor touch one another, which implies there is a separating line parallel to
axis 2.

Since rectangles A and B do not overlap nor touch one another, there exists a separating axis,
which means there exists a separating line parallel to axis 2. Hence, we know that rectangles A
and B do not intersect, and we are done.

Illustration: There exists separating lines parallel to axis 2.

There is no reason to check for separating lines parallel to axis 3 and axis 4 because we already
know that rectangles A and B do not intersect (because there exists at least one separating
line). However, if we were to continue, we would find that there is no separating line parallel to
axis 3, but there is a separating line parallel to axis 4.

Illustration: There exists separating lines parallel to axis 4, but there is no separating line
parallel to axis 3 that separates rectangles A and B.

Computing the Intersection of Two Oriented Bounding
Rectangles

Now that we have a better understanding of the Separating Axis Theorem, we will introduce
the inequalities used in the computation of finding intersections between any two rectangles.

Suppose we have rectangle A and rectangle B, and we have these properties for the rectangles:

PA = coordinate position of the center of rectangle A
Ax = unit vector representing the local x-axis of A
Ay = unit vector representing the local y-axis of A
WA = half width of A (corresponds with the local x-axis of A)
HA = half height of A (corresponds with the local y-axis of A)

PB = coordinate position of the center of rectangle B

Bx = unit vector representing the local x-axis of B
By = unit vector representing the local y-axis of B
WB = half width of B (corresponds with the local x-axis of B)
HB = half height of B (corresponds with the local y-axis of B)

Then we will have rectangles A and B visually depicted as follows:

Illustration: Rectangle A and rectangle B with their properties depicted.

Recall that rectangle A and rectangle B does not intersect if and only if a separating axis exists.
Then rectangle A and rectangle B intersects if and only if there is no separating axis. Hence, if
we find a separating axis, then rectangle A and rectangle B are disjoint and do not intersect.
However, if we do not find any separating axes, then rectangle A and rectangle B intersect.

Recall there are 4 possible separating axes for 2 rectangles, and they are perpendicular to the
edges of rectangles A and B. However, the edges are parallel to the local XY axes of the
rectangles, and the local x-axis and y-axis of each rectangle is perpendicular to one another (e.g.

Ax is perpendicular to Ay). Thus, the 4 possible separating axes we need to check for is Ax, Ay,
Bx, and By.

To reduce the complexity and increase the efficiency of the computation, we will not project
the entire rectangle A and rectangle B onto each possible separating axis. Instead, we will only
project half of each rectangle. Notice we can only do this because we have the mid-point of
each rectangle, and the dimensions of each rectangle extend symmetrically on both of its side
when a line intersects it in the center.

Illustration: No matter how a line divides a rectangle, if the line crosses the center of the
rectangle, then the line will bisect the rectangle such that the dimension of the rectangle
extends equally on both sides.

Let
T = PB – PA
L = an arbitrary axis (i.e. a unit vector)
Proj (v) = v • L = projection of v onto an axis, L

Then a separating axis, L, exists if and only if

|Proj (T)| > ½|Proj (RectangleA)| + ½|Proj (RectangleB)|

which is equivalent to

|Proj (T)| > |Proj (WA*Ax)| + |Proj (HA*Ay)| + |Proj (WB*Bx)| + |Proj(HB*By)|

which is equivalent to

| T • L | > | (WA*Ax) • L | + | (HA*Ay) • L | + | (WB*Bx) • L | + |(HB*By) • L |

where | s | denotes the absolute value of scalar s.

Illustration: T extends from the center of A to the center of B. This is why we only use half the
dimensions of rectangle A and rectangle B.

Illustration: The vector T and half of rectangles A and B are projected onto the axis L= Ax (or –
Ax). The magnitudes of the projections are compared side by side at the bottom of this
illustration. Notice, in this case, |T•L| > |(WAAx)•L| + |(HAAy)•L| + |(WBBx)•L| + |(HBBy)•L|.
Thus, L = Ax is a separating axis. However, notice that L = Ay and L = By are not separating axes
for the case in this illustration.

Here is the general inequality again:

| T • L | > | (WA*Ax) • L | + | (HA*Ay) • L | + | (WB*Bx) • L | + |(HB*By) • L |

Recall we have 4 cases to check in 2D space for determining the intersection between two
rectangles. Rectangles A and B intersect or collide if and only if the following 4 cases are all
false:

CASE 1:
// L = Ax

// If true, L is a separating axis parallel to Ax (and there exists a separating line parallel to Ay)

T • Ax	>	(WA*Ax) • Ax	+	(HA*Ay) • Ax	+	(WB*Bx) • Ax	+	(HB*By) • Ax
T • Ax	> WA + 0 +	(WB*Bx) • Ax	+	(HB*By) • Ax				
T • Ax	> WA +	(WB*Bx) • Ax	+	(HB*By) • Ax				

CASE 2:
// L = Ay
// If true, L is a separating axis parallel to Ay (and there exists a separating line parallel to Ax)

| T • Ay | > HA + | (WB*Bx) • Ay | + |(HB*By) • Ay |

CASE 3:
// L = Bx
// If true, L is a separating axis parallel to Bx (and there exists a separating line parallel to By)

| T • Bx | > | (WA* Ax) • Bx | + | (HA*Ay) • Bx | + WB

CASE 4:
// L = By
// If true, L is a separating axis parallel to By (and there exists a separating line parallel to Bx)

| T • By | > | (WA* Ax) • By | + | (HA*Ay) • By | + HB

Separating Axis Theorem and Boxes in 3D Space

Now we move onto the 3D space, and we will show how to compute the intersection or
collision between two oriented bounding boxes.

The logic is similar to the one in 2D space, but now instead of only having to consider 4 cases,
we need to consider 15 cases of possible separating axes (L).

In 3D space, we no longer have corresponding separating lines that are perpendicular to the
separating axes. Instead, we have separating planes that separate the bounding volumes (and
they are perpendicular to their corresponding separating axes).

Illustration: The separating plane in 3D space contrasts with the separating line in 2D space.
The separating plane separates box A from box B. In this particular illustration, the separating
plane is parallel to the right and left faces of box A.

Recall in 2D space, each rectangle has 2 unique axes extended by its edges, and the separating
lines (we are interested in) are parallel to these edges. Recall the reason we are only interested
in separating lines parallel to one of the edges is because if any separating line is to exist, it has
to be parallel to one of the edges.

In 3D space, each box only has 3 unique planes extended by its faces, and the separating planes
(we are interested in) are parallel to these faces. We are interested in the separating planes
parallel to the faces, but in 3D space, the faces are not the only concern. We are also interested
in the edges, which we will discuss later.

Illustration: The 3 unique planes of a box are parallel to the above 6 faces of the box. Notice a
box only has 3 unique planes because each face of a box is parallel to its opposite face. The top-
most box highlights the front and back faces as parallel planes. The left-most box highlights the
right and left faces as parallel planes, and the right-most box highlights the top and bottom
faces as parallel planes.

Recall in 2D space, the separating lines of interest are parallel to the edges of the rectangles,
and the separating axes of interest are perpendicular to the separating lines (such that the
separating axes of interest are perpendicular to the edges of the rectangles).

Similarly, in 3D space, the separating planes of interest are parallel to the faces of the boxes,
and the separating axes of interest are perpendicular to the separating planes. Hence the
separating axes of interest are perpendicular to the 3 unique faces of each box. Notice these 6
separating axes of interest correspond to the 6 local (XYZ) axes of the two boxes.

Therefore, there are at least 6 possible separating axes we need to verify.

Illustration: The separating planes of interest are depicted in red, while the separating axes of
interest are depicted as blue arrows intersecting the red planes. Notice the red separating
planes of interest are parallel to the faces of the boxes. Also note the blue separating axes of
interest are parallel to the local XYZ axes (also depicted in blue) of the boxes.

In 2D space, we only have the possibility of the edges colliding. In 3D space, we have the
possibility of the faces colliding in addition to the edges colliding.

Consider two faces (depicted green) in the illustration below. If we only consider separating
planes parallel to the faces, we will detect a collision when there is no collision. There is no
separating plane parallel to any of the faces, yet, a separating plane must exists because clearly,
the two faces are not intersecting. It turns out there exists a separating plane spanned by the
axes of two edges, one from each face.

Illustration: The above image depicts two non-intersecting green faces. A separating plane that
separates the two faces is spanned by the axes of the two edges highlighted in red. The bottom
image depicts a separating plane.

We have already found the 6 possible separating axes corresponding to collisions of the faces of
the boxes. Now we need to find the possible separating axes for the edges of the boxes.

Consider two edges (in general) in 3D space (depicted in the illustration below). The two edges
collide if and only if there is no separating plane that separates them. However, if any
separating plane is to exist between the two edges, there must exists a separating plane that is
parallel to the plane spanned by the axes of the two edges.

Illustration: In 3D space, the picture on the left depicts a green separating plane between the
two edges. Since the plane exists and separates the two edges, it must be the case that the two
edges do not intersect. The picture on the right depicts the separating plane parallel to the
plane spanned by the axes of the two edges. Note: The separating plane spans infinitely and is
not finite as depicted here in the illustration.

Notice there are 3 unique axes extended by the edges of each box (corresponding to the local
XYZ axes of the box).

Illustration: The 12 edges of a box and their corresponding parallel axes. Notice for the top-
most box, there are 4 edges parallel to the local x-axis of the box.

Since the separating plane is spanned by the combination of an edge from one box and an edge
from the other box, there are 3*3 = 9 such possible combinations between the 3 local axes
from each box for the 2 boxes. Then there are 9 possible separating planes just for considering
these edges. (That is, the 9 combinations are (Ax, Bx), (Ax, By), (Ax, Bz), (Ay, Bx), (Ay, By), (Ay,
Bz), (Az, Bx), (Az, By), (Az, Bz).)

Again, the possible separating axes are perpendicular to the separating planes. Since each
separating plane is spanned by an edge from one box and an edge from the other box, we can
take the cross product of the axes of these two edges to find the corresponding perpendicular
separating axes.

Illustration: The separating axis perpendicular to the separating plane can be found by taking
the cross product of the axes of the two edges. The two edges are the black lines in the
illustration.

Since the edges of each box are parallel to the box’s local axes, we just take the cross products
between the local (XYZ) axes of the two boxes to find the 9 possible separating axes.

So there are 9 separating axes to consider for edges collision in addition to the 6 separating
axes we already have found for the faces collision. This makes the total number of possible
separating axes to consider at 15. This is substantially more compared to the 4 possible
separating axes to consider in 2D space for 2 rectangles.

Case Studies: Detecting Intersecting Boxes

Here are the 15 possible separating axes (L).

CASE 1:
L = Ax

CASE 2:
L = Ay

CASE 3:

L = Az

CASE 4:
L = Bx

CASE 5:
L = By

CASE 6:
L = Bz

CASE 7:

L = Ax Bx

CASE 8:

L = Ax By

CASE 9:

L = Ax Bz

CASE 10:

L = Ay Bx

CASE 11:

L = Ay By

CASE 12:

L = Ay Bz

CASE 13:

L = Az Bx

CASE 14:

L = Az By

CASE 15:

L = Az Bz

We now present the projection of a box onto an axis, and this is not much different than the
projection of a rectangle onto an axis. The only difference is that the box has to accommodate
an additional dimension.

Consider a box A and an axis L.

Suppose box A has the following properties:

PA = coordinate position of the center of A
Ax = unit vector representing the x-axis of A
Ay = unit vector representing the y-axis of A
Az = unit vector representing the z-axis of A
WA = half width of A (corresponds with the local x-axis of A)
HA = half height of A (corresponds with the local y-axis of A)
DA = half depth of A (corresponds with the local z-axis of A)

The projection of half of a box A onto an axis L is given by the equation

½|Proj(BoxA)| = |Proj (WA*Ax)| + |Proj (HA*Ay)| + |Proj(DA*Az)|

 = | (WA*Ax) • L | + | (HA*Ay) • L | + |(DA*Az) • L |

Consider another box B with the following properties:

PB = coordinate position of the center of B
Bx = unit vector representing the x-axis of B
By = unit vector representing the y-axis of B
Bz = unit vector representing the z-axis of B
WB = half width of B (corresponds with the local x-axis of B)
HB = half height of B (corresponds with the local y-axis of B)
DB = half depth of B (corresponds with the local z-axis of B)

Let

T = PB – PA

Then the inequality we want to use to check for a collision is:

|Proj (T)| > |Proj (WA*Ax)| + |Proj (HA*Ay)| + |Proj(DA*Az)|

+ |Proj (WB*Bx)| + |Proj(HB*By)| + |Proj(DB*Bz)|

which is equivalent to

| T • L | > | (WA*Ax) • L | + | (HA*Ay) • L | + |(DA*Az) • L |

+ | (WB*Bx) • L | + |(HB*By) • L | + |(DB*Bz) • L |

where | s | denotes the absolute value of scalar s.

Computing the Intersection between Two Rectangles in 3D
Space is Problematic

Caution:

While I mentioned 2D faces in 3D space, our separating axis theorem approach does not exactly
work for collisions between two 2D objects in 3D space (unless the two rectangles are actually
boxes, such that each box has a dimension equal to zero).

Consider two 2D faces side-by-side lying in the same plane. No separating axis will be found by
our algorithm in 3D space even though the separating axis does exist. This is because the only
separating plane of interest is in between. Unfortunately, each rectangle only has one
orthogonal axis, and the span of the two orthogonal axes of the rectangles does not create a
plane because the two orthogonal axes are the same.

Illustration: Two 2D faces side-by-side lying in the same plane in 3D space. Clearly the two faces
are not intersecting, but our approach in 3D space will interpret the two faces as intersecting.
Notice, in this case, the only separating axes checked are perpendicular to both of the faces.
Also, notice these separating axes checked cannot be depicted in the illustration above because
they are going in and coming out of the page.

Since the separating axes checked are perpendicular to the corresponding separating plane, the
vector, T = PB – PA, projected onto these separating axes will always be 0. The projection of the
two faces onto these separating axes will also be 0. However, T = 0 is never greater than 0.
Hence, the two 2D faces will always be interpreted as colliding even though they are not
intersecting one another.

Note, however, that our approach will interpret the collision between one 2D object and one
3D object in 3D space correctly. There is only a problem when we consider the intersection
between two 2D objects in 3D space, and the problem should only occurs when the two faces
are coplanar (existing in the same plane), similar to the illustration above. It is still possible to
detect the collision between two 2D objects in 3D space by considering a combination of
separating lines (in 2D space) and separating planes (in 3D space).

Computing the Intersection of Two Oriented Bounding Boxes

Let A and B be oriented bounding boxes (OBB).

Parameters

PA = coordinate position of the center of A
Ax = unit vector representing the x-axis of A
Ay = unit vector representing the y-axis of A
Az = unit vector representing the z-axis of A
WA = half width of A (corresponds with the local x-axis of A)
HA = half height of A (corresponds with the local y-axis of A)
DA = half depth of A (corresponds with the local z-axis of A)

PB = coordinate position of the center of B
Bx = unit vector representing the x-axis of B
By = unit vector representing the y-axis of B
Bz = unit vector representing the z-axis of B
WB = half width of B (corresponds with the local x-axis of B)
HB = half height of B (corresponds with the local y-axis of B)
DB = half depth of B (corresponds with the local z-axis of B)

Variables

T = PB – PA
Rij = Ai •Bj

Here is the general inequality:

|||||||||||| LBzDLByHLBxWLAzDLAyHLAxWLT BBBAAA

Here are the 15 separating axes we need to inspect for 2 boxes in 3D space:

CASE 1:
AxL //

|||||||||||| AxBzDAxByHAxBxWAxAzDAxAyHAxAxWAxT BBBAAA

||||||00|| AxBzDAxByHAxBxWWAxT BBBA

|||||| RxzDRxyHRxxWWAxT BBBA

CASE 2:

AyL //

|||||||||||| AyBzDAyByHAyBxWAyAzDAyAyHAyAxWAyT BBBAAA

||||||0||0 AyBzDAyByHAyBxWHAyT BBBA

|||||| RyzDRyyHRyxWHAyT BBBA

CASE 3:
AzL //

|||||||||||| AzBzDAzByHAzBxWAzAzDAzAyHAzAxWAzT BBBAAA

||||||||00 AzBzDAzByHAzBxWDAzT BBBA

|||||| RzzDRzyHRzxWDAzT BBBA

CASE 4:

BxL //

|||||||||||| BxBzDBxByHBxBxWBxAzDBxAyHBxAxWBxT BBBAAA

00|||||||| BAAA WBxAzDBxAyHBxAxWBxT

BAAA WRzxDRyxHRxxWBxT ||||||

CASE 5:

ByL //

|||||||||||| ByBzDByByHByBxWByAzDByAyHByAxWByT BBBAAA

0||0|||||| BAAA HByAzDByAyHByAxWByT

BAAA HRzyDRyyHRxyWByT ||||||

CASE 6:
BzL //

|||||||||||| BzBzDBzByHBzBxWBzAzDBzAyHBzAxWBzT BBBAAA

||00|||||| BAAA DBzAzDBzAyHBzAxWBzT

BAAA DRzzDRyzHRxzWBzT ||||||

CASE 7:

|)(||)(||)(|)(BxAxAzDBxAxAyHBxAxAxWBxAxT AAA

 |)(||)(||)(| BxAxBzDBxAxByHBxAxBxW BBB

PROOF)()(BAsCCBsA

|)(||)(||)(|)(AxAzBxDAxAyBxHAxAxBxWBxAxT AAA

 |)(||)(||)(| AxBxBzDAxBxByHAxBxBxW BBB

|)(||)(||)(|)(AxAzBxDAxAyBxHAxAxBxWBxAxT AAA

 |)(||)(||)(| BxBzAxDBxByAxHBxBxAxW BBB

||||0)(AyBxDAzBxHBxAxT AA

 ||||0 ByAxDBzAxH BB

||||||||)(ByAxDBzAxHAyBxDAzBxHBxAxT BBAA

||||||||)(RxyDRxzHRyxDRzxHBxAxT BBAA

Similarly, for the following cases…

CASE 8:

ByAxL //

|)(|0|)(||)(||)(|0)(ByAxBzDByAxBxWByAxAzDByAxAyHByAxT BBAA

||||||||)(RxxDRxzWRyyDRzyHByAxT BBAA

CASE 9:

BzAxL //

0|)(||)(||)(||)(|0)(BzAxByHBzAxBxWBzAxAzDBzAxAyHBzAxT BBAA

||||||||)(RxxHRxyWRyzDRzzHBzAxT BBAA

CASE 10:

BxAyL //

BxAxL //

|)(||)(|0|)(|0|)(|)(BxAyBzDBxAyByHBxAyAzDBxAyAxWBxAyT BBAA

||||||||)(RyyDRyzHRxxDRzxWBxAyT BBAA

CASE 11:

ByAyL //

|)(|0|)(||)(|0|)(|)(ByAyBzDByAyBxWByAyAzDByAyAxWByAyT BBAA

||||||||)(RyxDRyzWRxyDRzyWByAyT BBAA

CASE 12:

BzAyL //

0|)(||)(||)(|0|)(|)(BzAyByHBzAyBxWBzAyAzDBzAyAxWBzAyT BBAA

||||||||)(RyxHRyyWRxzDRzzWBzAyT BBAA

CASE 13:

BxAzL //

|)(||)(|00|)(||)(|)(BxAzBzDBxAzByHBxAzAyHBxAzAxWBxAzT BBAA

||||||||)(RzyDRzzHRxxHRyxWBxAzT BBAA

CASE 14:

ByAzL //

|)(|0|)(|0|)(||)(|)(ByAzBzDByAzBxWByAzAyHByAzAxWByAzT BBAA

||||||||)(RzxDRzzWRxyHRyyWByAzT BBAA

CASE 15:

BzAzL //

0|)(||)(|0|)(||)(|)(BzAzByHBzAzBxWBzAzAyHBzAzAxWBzAzT BBAA

||||||||)(RzxHRzyWRxzHRyzWBzAzT BBAA

Optimizing the Computation of T•L

For those interested in optimizations, we can optimize the computations for T•L, whenever L
requires a cross product.

PROOF))(())(()(BxAzAyTBxAyAzTBxAxT

As a result of the above derivation, we can interpret the other 8 possible separating axes by
using our knowledge of the XYZ-axes, and the right-hand rule (for cross products).

Example:

The above equation we proved is with respect to the x-axis of A.

For)(BxAyT , we need the equation in respect to the y-axis of A. Refer to the illustration

below. With respect to the y-axis compared to with respect to the x-axis, Y corresponds with X,
Z corresponds with Y, and X corresponds with Z. Hence, we replace all Ax with Ay, all Ay with
Az, and all Az with Ax in the equation, and we get the following result:

))(())(()(BxAxAzTBxAzAxTBxAyT

Illustration: We orient the XYZ coordinate system with respect to Y and Z to make their
corresponding axes to the XYZ coordinate system with respect to X more apparent. Notice Y in
the system with respect to X is equivalent to Z in the system with respect to Y.

The illustration below shows how we derive the XYZ coordinate systems with respect to Y and Z
through rotations.

Illustration: 1) From X, we rotate the coordinate system to get the system with respect to Y.
2) From Y, we rotate the coordinate system to get the system with respect to Z.

Here are the optimized T•L equations for finding the 9 possible separating axes (for collisions
between edges):

BxAxL //

))(())(()(BxAzAyTBxAyAzTBxAxT

RzxAyTRyxAzTBxAxT)()()(

ByAxL //

))(())(()(ByAzAyTByAyAzTByAxT

RzyAyTRyyAzTByAxT)()()(

BzAxL //

))(())(()(BzAzAyTBzAyAzTBzAxT

RzzAyTRyzAzTBzAxT)()()(

BxAyL //

))(())(()(BxAxAzTBxAzAxTBxAyT

RxxAzTRzxAxTBxAyT)()()(

ByAyL //

))(())(()(ByAxAzTByAzAxTByAyT

RxyAzTRzyAxTByAyT)()()(

BzAyL //

))(())(()(BzAxAzTBzAzAxTBzAyT

RxzAzTRzzAxTBzAyT)()()(

BxAzL //

))(())(()(BxAyAxTBxAxAyTBxAzT

RyxAxTRxxAyTBxAzT)()()(

ByAzL //

))(())(()(ByAyAxTByAxAyTByAzT

RyyAxTRxyAyTByAzT)()()(

BzAzL //

))(())(()(BzAyAxTBzAxAyTBzAzT

RyzAxTRxzAyTBzAzT)()()(

Optimized Computation of OBBs Intersections

After our optimization of T•L, again, we present the 15 separating axis inequalities we need to
inspect to two oriented bounding boxes in 3D space.

Recall if at least one of these 15 inequalities is true, then there exists a separating axis. If a
separating axis exists, then the two OBBs (A and B) do not intersect, and there is no need to
further check the other cases. The two OBBs intersect if and only if all 15 inequalities are false.

For reference:

Let A and B be oriented bounding boxes (OBB).

Parameters

PA = coordinate position of the center of A
Ax = unit vector representing the x-axis of A
Ay = unit vector representing the y-axis of A
Az = unit vector representing the z-axis of A
WA = half width of A (corresponds with the local x-axis of A)
HA = half height of A (corresponds with the local y-axis of A)
DA = half depth of A (corresponds with the local z-axis of A)

PB = coordinate position of the center of B
Bx = unit vector representing the x-axis of B
By = unit vector representing the y-axis of B
Bz = unit vector representing the z-axis of B
WB = half width of B (corresponds with the local x-axis of B)
HB = half height of B (corresponds with the local y-axis of B)
DB = half depth of B (corresponds with the local z-axis of B)

Variables

T = PB – PA
Rij = Ai •Bj

Note: | c | = absolute value of c

Cases

CASE 1:

AxL //
// If true, L is a separating axis parallel to Ax (and there exists a separating plane with normal,
Ax)

|||||| RxzDRxyHRxxWWAxT BBBA

CASE 2:

AyL //

// If true, L is a separating axis parallel to Ay (and there exists a separating plane with normal,
Ay)

|||||| RyzDRyyHRyxWHAyT BBBA

CASE 3:
AzL //

// If true, L is a separating axis parallel to Az (and there exists a separating plane with normal,
Az)

|||||| RzzDRzyHRzxWDAzT BBBA

CASE 4:

BxL //
// If true, L is a separating axis parallel to Bx (and there exists a separating plane with normal,
Bx)

BAAA WRzxDRyxHRxxWBxT ||||||

CASE 5:

ByL //

// If true, L is a separating axis parallel to By (and there exists a separating plane with normal,
By)

BAAA HRzyDRyyHRxyWByT ||||||

CASE 6:
BzL //

// If true, L is a separating axis parallel to Bz (and there exists a separating plane with normal,
Bz)

BAAA DRzzDRyzHRxzWBzT ||||||

CASE 7:

// If true, L is a separating axis perpendicular to the separating plane spanned by Ax and Bx

||||||||)()(RxyDRxzHRyxDRzxHRzxAyTRyxAzT BBAA

CASE 8:

ByAxL //

// If true, L is a separating axis perpendicular to the separating plane spanned by Ax and By

||||||||)()(RxxDRxzWRyyDRzyHRzyAyTRyyAzT BBAA

CASE 9:

BxAxL //

BzAxL //
// If true, L is a separating axis perpendicular to the separating plane spanned by Ax and Bz

||||||||)()(RxxHRxyWRyzDRzzHRzzAyTRyzAzT BBAA

CASE 10:

BxAyL //

// If true, L is a separating axis perpendicular to the separating plane spanned by Ay and Bx

||||||||)()(RyyDRyzHRxxDRzxWRxxAzTRzxAxT BBAA

CASE 11:

ByAyL //

// If true, L is a separating axis perpendicular to the separating plane spanned by Ay and By

||||||||)()(RyxDRyzWRxyDRzyWRxyAzTRzyAxT BBAA

CASE 12:

BzAyL //

// If true, L is a separating axis perpendicular to the separating plane spanned by Ay and Bz

||||||||)()(RyxHRyyWRxzDRzzWRxzAzTRzzAxT BBAA

CASE 13:

BxAzL //
// If true, L is a separating axis perpendicular to the separating plane spanned by Az and Bx

||||||||)()(RzyDRzzHRxxHRyxWRyxAxTRxxAyT BBAA

CASE 14:

ByAzL //

// If true, L is a separating axis perpendicular to the separating plane spanned by Az and By

||||||||)()(RzxDRzzWRxyHRyyWRyyAxTRxyAyT BBAA

CASE 15:

BzAzL //
// If true, L is a separating axis perpendicular to the separating plane spanned by Az and Bz

||||||||)()(RzxHRzyWRxzHRyzWRyzAxTRxzAyT BBAA

Appendix

Case Studies: Detecting Intersecting Boxes

BACK TO 15 SEPARATING AXES

Case Study 1: Consider the two boxes illustrated above. The two boxes are clearly not
intersecting, yet, there is no separating plane parallel to any of the faces. However, the two
boxes are not intersecting, so there must be a separating plane that exists. A separating plane
that separates the two boxes is spanned by the axes of the two edges (one from each box),
highlighted in red.

Case Study 2: Consider the two boxes in the illustration above. The two boxes are clearly not in
collision, yet, there is no separating plane spanned by the axes of an edge from one box and an
edge from the other box. However, the two boxes are not intersecting, so there must be a
separating plane that separates them. A separating plane that separates the two boxes is
parallel to a face (outlined in red) of one of the boxes.

BACK TO 15 SEPARATING AXES

Proof sA • (B C) = sC • (A B)

BACK TO CASE 7

Claim:

)()(BAsCCBsA

where

s = constant/scalar
A = vector
B = vector
C = vector

Proof:

CzCyCx

BzByBx

kji

sACBsA)(

 k

CyCx

ByBx
j

CzCx

BzBx
i

CzCy

BzBy
sA

 k

CyCx

ByBx
j

CzCx

BzBx
i

CzCy

BzBy
AzAyAxs),,(

 kByCxBxCyjBzCxBxCziBzCyByCzAzAyAxs)()()(),,(

 kByCxBxCyjBzCxBxCziBzCyByCzAzAyAxs)()()(),,(

 ByCxBxCyBzCxBxCzBzCyByCzAzAyAxs ,,),,(

))(

)(

)((

ByCxBxCyAz

BzCxBxCzAy

BzCyByCzAxs

)

(

AzByCxAzBxCy

AyBzCxAyBxCz

AxBzCyAxByCzs

)

(

CxAzByCyAzBx

CxAyBzCzAyBx

CyAxBzCzAxBys

)

(

CxAzByCxAyBz

CyAxBzCyAzBx

CzAyBxCzAxBys

)

(

CzAyBxCzAxBy

CyAxBzCyAzBx

CxAzByCxAyBzs

))(

)(

)((

AyBxAxByCz

AxBzAzBxCy

AzByAyBzCxs

)(

)(

)(

AyBxAxBysCz

AxBzAzBxsCy

AzByAyBzsCx

))(),(),((),,(AyBxAxByAxBzAzBxAzByAyBzsCzsCysCx

))(),(),((),,(AyBxAxByAzBxAxBzAzByAyBzCzCyCxs

))(),(),((AyBxAxByAzBxAxBzAzByAyBzsC

))()()((kAyBxAxByjAzBxAxBziAzByAyBzsC

)(k
ByBx

AyAx
j

BzBx

AzAx
i

BzBy

AzAy
sC

BzByBx

AzAyAx

kji

sC

)(BAsC

BACK TO CASE 7

Proof T • (Ax Bx) = (T • Az)(Ay • Bx) – (T • Ay)(Az • Bx)

BACK TO OPTIMIZING THE COMPUTATION OF T•L

Claim:

))(())(()(BxAzAyTBxAyAzTBxAxT

where

T = vector
Ax = unit vector representing the local x-axis of A
Ay = unit vector representing the local y-axis of A
Az = unit vector representing the local z-axis of A
Bx = unit vector representing the local x-axis of B
By = unit vector representing the local y-axis of B
Bz = unit vector representing the local z-axis of B

Note: Ax, Ay, Az are all orthogonal to one another. Similarly, Bx, By, Bz are all orthogonal to one
another.

Proof:

BxzBxyBxx

AxzAxyAxx

kji

TBxAxT)(

 k

BxyBxx

AxyAxx
j

BxzBxx

AxzAxx
i

BxzBxy

AxzAxy
TsTrTq),,(

 kAxyBxxAxxBxyjAxzBxxAxxBxziAxzBxyAxyBxzTsTrTq)()()(),,(

 kAxyBxxAxxBxyjAxzBxxAxxBxziAxzBxyAxyBxzTsTrTq)()()(),,(

 AxyBxxAxxBxyAxzBxxAxxBxzAxzBxyAxyBxzTsTrTq ,,),,(

)(

)(

)(

AxyBxxAxxBxyTs

AxzBxxAxxBxzTr

AxzBxyAxyBxzTq

)(

)(

)(

Bxx
AzzAzx

AyzAyx
Bxy

AzzAzy

AyzAyy
Ts

Bxx
AzyAzx

AyyAyx
Bxz

AzzAzy

AyzAyy
Tr

Bxy
AzyAzx

AyyAyx
Bxz

AzzAzx

AyzAyx
Tq

)(

)(

)(

Bxx
AzzAzx

AyzAyx
Bxy

AzzAzy

AyzAyy
Ts

Bxx
AzyAzx

AyyAyx
Bxz

AzzAzy

AyzAyy
Tr

Bxy
AzyAzx

AyyAyx
Bxz

AzzAzx

AyzAyx
Tq

))()((

))()((

))()((

BxxAyzAzxAyxAzzBxyAyzAzyAyyAzzTs

BxxAyyAzxAyxAzyBxzAyzAzyAyyAzzTr

BxyAyyAzxAyxAzyBxzAyzAzxAyxAzzTq

)(

)(

)(

AyzAzxBxxAyxAzzBxxAyzAzyBxyAyyAzzBxyTs

AyyAzxBxxAyxAzyBxxAyzAzyBxzAyyAzzBxzTr

AyyAzxBxyAyxAzyBxyAyzAzxBxzAyxAzzBxzTq

)(

)(

)(

AyzAzxBxxAyzAzyBxyAyxAzzBxxAyyAzzBxyTs

AyxAzyBxxAyzAzyBxzAyyAzxBxxAyyAzzBxzTr

AyyAzxBxyAyzAzxBxzAyxAzyBxyAyxAzzBxzTq

)()(

)()(

)()(

AyzAzxBxxAyzAzyBxyTsAyxAzzBxxAyyAzzBxyTs

AyxAzyBxxAyzAzyBxzTrAyyAzxBxxAyyAzzBxzTr

AyyAzxBxyAyzAzxBxzTqAyxAzyBxyAyxAzzBxzTq

)()(

)()(

)()(

AzxBxxAzyBxyTsAyzAyxBxxAyyBxyTsAzz

AyxBxxAyzBxzTrAzyAzxBxxAzzBxzTrAyy

AyyBxyAyzBxzTqAzxAzyBxyAzzBxzTqAyx

)()(

)()(

)()(

AzxBxxAzyBxyTsAyzAyxBxxAyyBxyTsAzz

AyxBxxAyzBxzTrAzyAzxBxxAzzBxzTrAyy

AyyBxyAyzBxzTqAzxAzyBxyAzzBxzTqAyx

)()(

)()(

)()(

AyxBxxAyyBxyTsAzzAzxBxxAzyBxyTsAyz

AyxBxxAyzBxzTrAzyAzxBxxAzzBxzTrAyy

AyyBxyAyzBxzTqAzxAzyBxyAzzBxzTqAyx

)()(

)()(

)()(

AyyBxyAyxBxxTsAzzAzyBxyAzxBxxTsAyz

AyzBxzAyxBxxTrAzyAzzBxzAzxBxxTrAyy

AyzBxzAyyBxyTqAzxAzzBxzAzyBxyTqAyx

0)()(

0)()(

0)()(

AyyBxyAyxBxxTsAzzAzyBxyAzxBxxTsAyz

AyzBxzAyxBxxTrAzyAzzBxzAzxBxxTrAyy

AyzBxzAyyBxyTqAzxAzzBxzAzyBxyTqAyx

zTsAyzAzzBxzTsAyzAzzBxAyyBxyAyxBxxTsAzzAzyBxyAzxBxxTsAyz

yTrAyyAzyBxyTrAyyAzyBxAyzBxzAyxBxxTrAzyAzzBxzAzxBxxTrAyy

xTqAyxAzxBxxTqAyxAzxBxAyzBxzAyyBxyTqAzxAzzBxzAzyBxyTqAyx

)()(

)()(

)()(

zTsAyzAzzBxAyyBxyAyxBxxTsAzzzTsAyzAzzBxAzyBxyAzxBxxTsAyz

yTrAyyAzyBxAyzBxzAyxBxxTrAzyyTrAyyAzyBxAzzBxzAzxBxxTrAyy

xTqAyxAzxBxAyzBxzAyyBxyTqAzxxTqAyxAzxBxAzzBxzAzyBxyTqAyx

)()(

)()(

)()(

)()(

)()(

)()(

AyzBxzAyyBxyAyxBxxTsAzzAzzBxzAzyBxyAzxBxxTsAyz

AyzBxzAyyBxyAyxBxxTrAzyAzzBxzAzyBxyAzxBxxTrAyy

AyzBxzAyyBxyAyxBxxTqAzxAzzBxzAzyBxyAzxBxxTqAyx

)(

)(

)(

)(

)(

)(

AyzBxzAyyBxyAyxBxxTsAzz

AzzBxzAzyBxyAzxBxxTsAyz

AyzBxzAyyBxyAyxBxxTrAzy

AzzBxzAzyBxyAzxBxxTrAyy

AyzBxzAyyBxyAyxBxxTqAzx

AzzBxzAzyBxyAzxBxxTqAyx

)(

)(

)(

)(

)(

)(

AyzBxzAyyBxyAyxBxxTsAzz

AyzBxzAyyBxyAyxBxxTrAzy

AyzBxzAyyBxyAyxBxxTqAzx

AzzBxzAzyBxyAzxBxxTsAyz

AzzBxzAzyBxyAzxBxxTrAyy

AzzBxzAzyBxyAzxBxxTqAyx

))((

))((

AyzBxzAyyBxyAyxBxxTsAzzTrAzyTqAzx

AzzBxzAzyBxyAzxBxxTsAyzTrAyyTqAyx

)),,(),,)(((

)),,(),,)(((

BxzBxyBxxAyzAyyAyxTsAzzTrAzyTqAzx

BxzBxyBxxAzzAzyAzxTsAyzTrAyyTqAyx

))((

))((

BxAyTsAzzTrAzyTqAzx

BxAzTsAyzTrAyyTqAyx

))((

))((

BxAyTsAzzTrAzyTqAzx

BxAzTsAyzTrAyyTqAyx

))((

))((

BxAzTsAyzTrAyyTqAyx

BxAyTsAzzTrAzyTqAzx

)))(,,(),,((

)))(,,(),,((

BxAzAyzAyyAyxTsTrTq

BxAyAzzAzyAzxTsTrTq

))((

))((

BxAzAyT

BxAyAzT

))(())((BxAzAyTBxAyAzT

BACK TO OPTIMIZING THE COMPUTATION OF T•L

Bibliography

Gomez, Miguel. "Simple Intersection Tests For Games." 18 October 1999. Gamasutra. 27
November 2008 <http://www.gamasutra.com/features/19991018/Gomez_1.htm>.

S. Gottschalk, M. Lin, and D. Manocha. “OBB-Tree: A Hierarchical Structure for Rapid
Interference Detection.” ACM SIGGRAPH. 1996.
(Downloaded from http://www.stanford.edu/class/cs273/refs/obb.pdf)

	Separating Axis Theorem and Rectangles in 2D Space
	Computing the Intersection of Two Oriented Bounding Rectangles
	Separating Axis Theorem and Boxes in 3D Space
	Computing the Intersection between Two Rectangles in 3D Space is Problematic
	Computing the Intersection of Two Oriented Bounding Boxes
	Optimizing the Computation of T•L
	Optimized Computation of OBBs Intersections
	Appendix
	Case Studies: Detecting Intersecting Boxes
	Proof sA • (B C) = sC • (A B)
	Proof T • (Ax Bx) = (T • Az)(Ay • Bx) – (T • Ay)(Az • Bx)

	Bibliography

